58 research outputs found

    Assessment of Security Threats via Network Topology Analysis: An Initial Investigation.

    Get PDF
    Computer networks have increasingly been the focus of cyber attack, such as botnets, which have a variety of serious cybersecurity implications. As a consequence, understanding their behaviour is an important step towards the mitigation of such threat. In this paper, we propose a novel method based on network topology to assess the spreading and potential security impact of botnets. Our main motivation is to provide a toolbox to classify and analyse the security threats posed by botnets based on their dynamical and statistical behaviour. This would potentially lead to a better understanding and prediction of cybersecurity issues related to computer networks. Our initial validation shows the potential of our method providing relevant and accurate results

    Deploying and sharing U-Compare workflows as web services

    Get PDF
    BACKGROUND: U-Compare is a text mining platform that allows the construction, evaluation and comparison of text mining workflows. U-Compare contains a large library of components that are tuned to the biomedical domain. Users can rapidly develop biomedical text mining workflows by mixing and matching U-Compare’s components. Workflows developed using U-Compare can be exported and sent to other users who, in turn, can import and re-use them. However, the resulting workflows are standalone applications, i.e., software tools that run and are accessible only via a local machine, and that can only be run with the U-Compare platform. RESULTS: We address the above issues by extending U-Compare to convert standalone workflows into web services automatically, via a two-click process. The resulting web services can be registered on a central server and made publicly available. Alternatively, users can make web services available on their own servers, after installing the web application framework, which is part of the extension to U-Compare. We have performed a user-oriented evaluation of the proposed extension, by asking users who have tested the enhanced functionality of U-Compare to complete questionnaires that assess its functionality, reliability, usability, efficiency and maintainability. The results obtained reveal that the new functionality is well received by users. CONCLUSIONS: The web services produced by U-Compare are built on top of open standards, i.e., REST and SOAP protocols, and therefore, they are decoupled from the underlying platform. Exported workflows can be integrated with any application that supports these open standards. We demonstrate how the newly extended U-Compare enhances the cross-platform interoperability of workflows, by seamlessly importing a number of text mining workflow web services exported from U-Compare into Taverna, i.e., a generic scientific workflow construction platform

    Distributed Temporal Link Prediction Algorithm Based on Label Propagation

    Get PDF
    Link prediction has steadily become an important research topic in the area of complex networks. However, the current link prediction algorithms typically neglect the evolution process and they tend to exhibit low accuracy and scalability when applied to large-scale networks. In this article, we propose a novel distributed temporal link prediction algorithm based on label propagation (DTLPLP), governed by the dynamical properties of the interactions between nodes. In particular, nodes are associated with labels, which include details of their sources, and the corresponding similarity value. When such labels are propagated across neighbouring nodes, they are updated based on the weights of the incident links, and the values from same source nodes are aggregated to evaluate the scores of links in the predicted network. Furthermore, DTLPLP has been designed to be distributed and parallelised, and thus suitable for large-scale network analysis. As part of the validation process, we have designed a prototype system developed in Pregel, which is a distributed network analysis framework. Experiments are conducted on the Enron e-mails and the General Relativity and Quantum Cosmology Scientific Collaboration networks. The experimental results show that compared to the most of link prediction algorithms, DTLPLP offers enhanced accuracy, stability and scalability

    Leveraging AI and Machine Learning for National Student Survey: Actionable Insights from Textual Feedback to Enhance Quality of Teaching and Learning in UK’s Higher Education

    Get PDF
    Students’ evaluation of teaching, for instance, through feedback surveys, constitutes an integral mechanism for quality assurance and enhancement of teaching and learning in higher education. These surveys usually comprise both the Likert scale and free-text responses. Since the discrete Likert scale responses are easy to analyze, they feature more prominently in survey analyses. However, the free-text responses often contain richer, detailed, and nuanced information with actionable insights. Mining these insights is more challenging, as it requires a higher degree of processing by human experts, making the process time-consuming and resource intensive. Consequently, the free-text analyses are often restricted in scale, scope, and impact. To address these issues, we propose a novel automated analysis framework for extracting actionable information from free-text responses to open-ended questions in student feedback questionnaires. By leveraging state-of-the-art supervised machine learning techniques and unsupervised clustering methods, we implemented our framework as a case study to analyze a large-scale dataset of 4400 open-ended responses to the National Student Survey (NSS) at a UK university. These analyses then led to the identification, design, implementation, and evaluation of a series of teaching and learning interventions over a two-year period. The highly encouraging results demonstrate our approach’s validity and broad (national and international) application potential—covering tertiary education, commercial training, and apprenticeship programs, etc., where textual feedback is collected to enhance the quality of teaching and learning

    Topic detection using paragraph vectors to support active learning in systematic reviews

    Get PDF
    AbstractSystematic reviews require expert reviewers to manually screen thousands of citations in order to identify all relevant articles to the review. Active learning text classification is a supervised machine learning approach that has been shown to significantly reduce the manual annotation workload by semi-automating the citation screening process of systematic reviews. In this paper, we present a new topic detection method that induces an informative representation of studies, to improve the performance of the underlying active learner. Our proposed topic detection method uses a neural network-based vector space model to capture semantic similarities between documents. We firstly represent documents within the vector space, and cluster the documents into a predefined number of clusters. The centroids of the clusters are treated as latent topics. We then represent each document as a mixture of latent topics. For evaluation purposes, we employ the active learning strategy using both our novel topic detection method and a baseline topic model (i.e., Latent Dirichlet Allocation). Results obtained demonstrate that our method is able to achieve a high sensitivity of eligible studies and a significantly reduced manual annotation cost when compared to the baseline method. This observation is consistent across two clinical and three public health reviews. The tool introduced in this work is available from https://nactem.ac.uk/pvtopic/
    corecore